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Electromagnetic energy, absorption, and Casimir forces: Uniform dielectric media
in thermal equilibrium
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The derivation of Casimir forces between dielectrics can be simplified by ignoring absorption, calculating
energy changes due to displacements of the dielectrics, and only then admitting absorption by allowing
permittivities to be complex. As a first step toward a better understanding of this situation we consider in
this article the model of a dielectric as a collection of oscillators, each of which is coupled to a reservoir
giving rise to damping and Langevin forces on the oscillators and a noise polarization acting as a source of a
fluctuating electromagnetic field in the dielectric. The model leads naturally to expressions for the quantized
electric and magnetic fields that are consistent with those obtained in approaches that diagonalize the coupled
system of oscillators for the dielectric medium, the reservoir, and the electromagnetic field. It also results in
a fluctuation-dissipation relation between the noise polarization and the imaginary part of the permittivity;
comparison with the Rytov fluctuation-dissipation relation employed in the well-known Lifshitz theory for the
van der Waals (or Casimir) force shows that the Lifshitz theory is actually a classical stochastic electrodynamical
theory. The approximate classical expression for the energy density in a band of frequencies at which absorption
in a dielectric is negligible is shown to be exact as a spectral thermal equilibrium expectation value in quantum
electrodynamic theory. Our main result is the derivation of an expression for the QED energy density of a
uniform dispersive, absorbing media in thermal equilibrium. The spectral density of the energy is found to have
the same form with or without absorption. We also show how the fluctuation-dissipation theorem ensures a
detailed balance of energy exchange between the (absorbing) medium, the reservoir, and the electromagnetic
field in thermal equilibrium.
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I. INTRODUCTION

Based on the assumption of an electromagnetic (EM)
energy 1

2h̄ω per mode of angular frequency ω at zero
temperature, Casimir [1] famously showed that there is an
attractive force between two uncharged, perfectly conducting
plates. Lifshitz [2] generalized the theory to the case of two
thick dielectric slabs in thermal equilibrium by calculating the
stress tensor for the fluctuating field in a vacuum between
the slabs. Casimir’s original method involving changes in
zero-point field energy was later extended to dielectrics by
van Kampen et al. [3] in the “nonretarded” case of small
separations and by others for arbitrary separations [4].

Derivations of the Lifshitz formula that invoke changes in
zero-point energy begin by assuming real dielectric permit-
tivities. After an integral over frequencies for the force as a
function of the distance separating the dielectrics is obtained,
the permittivities are allowed to be complex functions, analytic
in the upper half of the complex frequency plane as required
by causality. This allows an analytic continuation to an integral
involving only purely imaginary frequencies, at which the
permittivities are purely real, and the resulting expression
is equivalent to that of Lifshitz, who requires complex
permittivities (absorption) through the fluctuation-dissipation
relation. In this article we take a first step toward a better
understanding of why this approach leads in the end to
results that are equivalent to those obtained by Lifshitz-type
approaches, which are not based on calculations of energy
changes and which account explicitly for absorption via a
fluctuation-dissipation relation.

We begin in the following section by revisiting the
classical theory of electromagnetic energy density for

quasi-monochromatic fields in a dispersive, absorbing
medium. At frequencies ω at which absorption is negligible
the classical expression for the average energy density is [5]

u(r, ω)= 1

16π

[
d(ωεR)

dω
|Eω(r)|2+ d(ωµR)

dω
|Hω(r)|2

]
, (1)

where εR and µR are, respectively, the (real) permittivity and
the magnetic permeability at frequency ω, Eω(r) and Hω(r)
are the electric and magnetic fields at ω, and the bar over
u(r, ω) indicates a time average (see Sec. II A). In the following
section it is also shown that, within a band of frequencies
for which absorption is negligible, u(r, ω) gives exactly the
spectral energy density as long as the fields at different
frequencies undergo uncorrelated fluctuations. In QED theory
in which there are quantum field fluctuations, this holds for
the expectation value of the thermal equilibrium energy and
in particular for the zero-point energy. More interesting for
our purposes, however, is the fact that these expectation values
in QED have the same form with or without absorption in
uniform media.

This article is organized as follows. In Sec. II we review
some aspects of the classical theory of electromagnetic
energy density in dispersive, absorbing media. Equation (1)
is shown to give the total energy density of the field and the
polarizable particles of a purely dielectric medium (µ = 1)
at frequencies for which dissipation is negligible. Whereas
it gives approximately the total energy density in the case
of quasi-monochromatic fields, it gives exactly the average
total spectral energy density within a band of frequencies in
which different frequencies undergo uncorrelated fluctuations,
provided that absorption can be ignored in this band. We
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review in Sec. III the total QED thermal equilibrium energy
density for a dispersive magnetodielectric medium in which
absorption is negligible. In Sec. IV we treat in some detail
the quantum theory of a dielectric medium modeled as a
collection of polarizable material oscillators, allowing for
dissipation by coupling each of these oscillators to a reservoir
and deriving the fluctuation-dissipation relation for the noise
polarization arising from quantum fluctuations of the bath
oscillators. We argue, based on this derivation, that the Lifshitz
theory employing such a fluctuation-dissipation relation is in
fact a classical stochastic electrodynamical theory. Proceeding
as in the Lifshitz theory in which the noise polarization
acts as a source of a fluctuating electromagnetic field, we
obtain expressions for the quantized electromagnetic field in a
dissipative medium; these quantized fields have the same form
as in the Huttner-Barnett theory in which the Hamiltonian for
the coupled system of oscillators for the dielectric medium,
the reservoir, and the electromagnetic field is diagonalized [6].
Adding each contribution to the total energy density, including
that from the reservoir, we derive the expression, Eq. (106),
for the QED energy density of a uniform dispersive, absorbing
medium in thermal equilibrium. We show in particular that it
has exactly the same form as that obtained in Sec. III when
dissipation is neglected and that it is affected by dissipation
only through the dependence on dissipation of the real part of
the refractive index. In Sec. V we summarize our conclusions
and discuss briefly how they apply to two examples: the
Einstein A coefficient for spontaneous emission and the van der
Waals interaction of atoms embedded in a dissipative dielectric
medium.

This is intended to be the first of two articles dealing with
electromagnetic energy in dispersive, dissipative media. The
approach described here will be extended in a forthcoming
article [7] on the effects of dissipation when Casimir effects
(presence of material boundaries) are calculated following an
approach based on zero-point energy.

II. CLASSICAL ELECTROMAGNETIC ENERGY DENSITY
IN DISPERSIVE, ABSORBING MEDIA

The problem of defining and calculating an electromagnetic
energy density for the classical EM field in dispersive and
absorbing media was investigated in detail by Barash and
Ginzburg [8,9]. Here we review some of the main points
and difficulties associated with this problem. The classical
expression for electromagnetic energy density can be derived
from the Poynting theorem,

−∇ · S = 1

4π

(
E · ∂D

∂t
+ H · ∂B

∂t

)
, (2)

where S = c (E × H) /4π is the Poynting vector in the
conventional notation, and D, H include contributions from
both bound and free charges. We assume that the constitutive
relations connecting E, D, B, and H are linear, isotropic, and
spatially local, so that writing

E(r, t) =
∫ ∞

−∞
dωE(r, ω)e−iωt ,

(3)

H(r, t) =
∫ ∞

−∞
dωH(r, ω)e−iωt ,

we have

D(r, t) =
∫ ∞

−∞
dωε(r, ω)E(r, ω)e−iωt ,

(4)

B(r, t) =
∫ ∞

−∞
dωµ(r, ω)H(r, ω)e−iωt .

We write the (complex) electric permittivity ε and the magnetic
permeability µ in terms of real and imaginary parts: ε(r, ω) =
εR(r, ω) + iεI (r, ω) and µ(r, ω) = µR(r, ω) + iµI (r, ω). At
this point we should stress that we consider only passive media
throughout this work, meaning that εI (ω), µI (ω) > 0 for all
frequencies. The well-known relations

E(r,−ω) = E∗(r, ω), B(r,−ω) = B∗(r, ω),
(5)

ε(r,−ω) = ε∗(r, ω), and µ(r,−ω) = µ∗(r, ω)

follow from the reality of E and B. Then∫ t

−∞
dt ′(−∇ · S) = WE + WH , (6)

with

WE(r, t) ≡ 1

4π

∫ t

−∞
dt ′E · ∂D

∂t ′
= 1

8π

∫ ∞

−∞
dω

×
∫ ∞

−∞
dω′

[
ω′ε∗(ω′) − ωε(ω)

ω′ − ω

]
(7)× E(r, ω) · E∗(r, ω′)ei(ω′−ω)t ,

WM (r, t) ≡ 1

4π

∫ t

−∞
dt ′H · ∂B

∂t ′
= 1

8π

∫ ∞

−∞
dω

×
∫ ∞

−∞
dω′

[
ω′µ∗(ω′) − ωµ(ω)

ω′ − ω

]
× H(r, ω) · H∗(r, ω′)ei(ω′−ω)t , (8)

obtained using the properties in (5). (To simplify notation
henceforth we do not indicate any dependence of ε and µ on r.)
The constants of integration vanish under the assumption that
E(r, t) → 0 and H(r, t) → 0 as t → −∞.

So far we have been using the concept of electromagnetic
energy density a bit loosely, and at this point we would like to
make our statements more precise. Being a direct consequence
of Maxwell’s equations, the balance relation (6) is valid
under arbitrary thermodynamical conditions, so it can be used
to describe general out-of-equilibrium systems. However, in
those situations one should be careful in defining energies, as
it is easy to see that in such systems the right-hand side of
(6) contains not only the “standard” electromagnetic energy
W (r, t) but also the dissipated heat Q(r, t), and, as discussed
by Barash and Ginzburg [8,9], in general it is impossible to
separate the two in an unambiguous way. So, in order to avoid
confusion, we always work with the sum

W(r, t) = W (r, t) + Q(r, t), (9)

and we refer to W(r, t) as the electromagnetic energy for lack
of a better term, but always bearing the above considerations
in mind. In the case where thermal equilibrium is established,
the evolved heat Q(r, t) vanishes and W(r, t) coincides with
W (r, t). In addition, even for situations in thermal equilibrium,
we make the distinction of the EM energy when there is
absorption present (εI , µI �= 0), which we call W (r, t), and
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when absorption is absent (εI = µI = 0), which we denote by
u(r, t).

In the limiting case of a monochromatic field we have

E(r, ω) = 1
2 Eω0 (r)[δ(ω − ω0) + δ(ω + ω0)], (10)

and, if absorption at frequency ω0 is negligible, it follows from
(7) that at thermal equilibrium

uE(r, ω0) = 1

16π

[
d(ωεR)

dω

]
ω0

|Eω0 (r)|2, (11)

where we have averaged over the period 2π/ω0 and have used

ω′ε∗(ω′) − ωε(ω)

ω′ − ω
= ω′εR(ω′) − ωεR(ω)

ω′ − ω
→ d

dω
(ωεR) (12)

for ε(ω) = εR(ω) and ω′ → ω. Together with the correspond-
ing result for uM (r), this gives Eq. (1).

A. Quasi-monochromatic fields

In the case of quasi-monochromatic fields it is convenient
to write the fields E(r, t) and H(r, t) as

E(r, t) = 1

2
[E0(r, t)e−iω0t + E∗

0(r, t)eiω0t ]

=
∫ ∞

0
dω[E(r, ω)e−iωt + E∗(r, ω)eiωt ], (13)

H(r, t) = 1

2
[H0(r, t)e−iω0t + H∗

0(r, t)eiω0t ]

=
∫ ∞

0
dω[H(r, ω)e−iωt + H∗(r, ω)eiωt ], (14)

where the envelope functions E0(r, t) and H0(r, t) vary slowly
in time compared to e−iω0t . The Fourier components E(r, ω)
and H(r, ω) in this case are sharply peaked at the frequency ω0,
and we consider the time averages (WE and WH ) of WE and
WH over times long compared to 2π/ω0 but short compared
to times over which E0 and H0 vary significantly. We also
assume that ε(ω) and µ(ω) vary slowly enough near ω = ω0

so that we can retain only the first-order terms in their Taylor
series about ω0 [8]:

ωε(ω) ∼= ω0ε(ω0) + d(ωε)

dω

∣∣∣∣
ω0

(ω − ω0)

= ωε(ω0) + dε

dω

∣∣∣∣
ω0

(ω − ω0),

(15)

ωµ(ω) ∼= ω0µ(ω0) + d(ωµ)

dω

∣∣∣∣
ω0

(ω − ω0)

= ωµ(ω0) + dµ

dω

∣∣∣∣
ω0

(ω − ω0).

With these approximations we find straightforwardly
that

WE(t) ∼= 1

16π

d(ωεR)

dω

∣∣∣∣
ω0

|E0(r, t)|2 + ω0t

8π
εI (ω0)|E0(r, t)|2

(16)

and

WM (t) ∼= 1

16π

d(ωµR)

dω

∣∣∣∣
ω0

|H0(r, t)|2 + ω0t

8π
µI (ω0)|H0(r, t)|2,

(17)

where we have used

E(r, t)2 =
∫ ∞

0
dω

∫ ∞

0
dω′E∗(r, ω) · E(r, ω′)ei(ω−ω′)t

= 1

2
|E0(r, t)|2,

H(r, t)2 =
∫ ∞

0
dω

∫ ∞

0
dω′H∗(r, ω) · H(r, ω′)ei(ω−ω′)t

= 1

2
|H0(r, t)|2. (18)

The time t here has been assumed to be short compared
to the time over which the slowly varying field envelopes
E0(r, t) and H0(r, t) change significantly, as otherwise even
small deviations from monochromaticity can invalidate the
approximations (16) and (17).

Equation (16) gives the first two terms corresponding to
the expression (8) of Barash and Ginzburg [8]. To obtain the
remaining terms in that expression we must include terms
proportional to dεI /dω, which may be written as

1

16π

id(ωεI )

dω

∫ ∞

−∞
dω

∫ ∞

−∞
dω′ (ω − ω0) + (ω′ − ω0)

ω′ − ω

× E(r, ω) · E∗(r, ω′)ei(ω′−ω)t , (19)

and, after straightforward manipulations, as

1

16π

id(ωεI )

dω

∫ t

−∞
dt ′

[
dE0(r, t ′)

dt ′
· E∗

0(r, t ′)

− dE∗
0(r, t ′)
dt ′

· E0(r, t ′)
]

, (20)

which is nothing but the time integral of the third term in
Eq. (8) of [8]. Since the discussion of quasi-monochromatic
fields is not the main goal of this article we stop it here,
referring the reader to [8,9] for further details. There one
can find extensive discussions on the interplay of EM energy
and heat generated, on how dissipation makes it (in general)
impossible to write the “standard” EM energy W (r, t) in terms
of dielectric functions alone, on how it is possible to go beyond
the quasi-monochromatic approximation when dissipation is
absent, etc.

B. Uncorrelated frequencies

Another situation where it is possible to simplify the general
expression for the energy density is when we have stochastic
fields such that their autocorrelation functions in the frequency
domain satisfy

〈〈E(r, ω) · E∗(r, ω′)〉〉 = 1
2 |E(r, ω)|2δ(ω′ − ω),

〈〈H(r, ω) · H∗(r, ω′)〉〉 = 1
2 |H(r, ω)|2δ(ω′ − ω), (21)

〈〈E(r, ω) · E(r, ω′)〉〉 = 〈〈H(r, ω) · H(r, ω′)〉〉 = 0,

where 〈〈· · ·〉〉 denotes the average over the appropriate
ensemble. From these correlation functions it follows that

033812-3



F. S. S. ROSA, D. A. R. DALVIT, AND P. W. MILONNI PHYSICAL REVIEW A 81, 033812 (2010)

correlations in the time domain are stationary:

〈〈E(r, t) · E(r, t ′)〉〉 = FE(r, t − t ′),
(22)〈〈H(r, t) · H(r, t ′)〉〉 = FH (r, t − t ′).

It is clear that Eqs. (22) are satisfied when there is no net
dissipation or gain, which means either that εI = µI = 0
or that there are Langevin-type forces in the system that
compensate for dissipated energy. Restricting ourselves to the
first case in this simple example, we can use (21) to calculate
the ensemble average of (7) and (8) and obtain at thermal
equilibrium

〈〈uE + uM〉〉 = 1

16π

∫ ∞

0
dω

[
d

dω
(ωεR)〈〈|E(r, ω)|2〉〉

+ d

dω
(ωµR)〈〈|H(r, ω)|2〉〉

]
. (23)

Of course this expression is strictly valid only over frequency
ranges at which absorption is negligible; in such ranges the
integrand of Eq. (23) gives exactly the spectral energy density.

C. Classical oscillator model for the energy density

In order to better focus on the physics involved in these
considerations of energy density we briefly review a classical
model [10] in which the medium consists of N harmonic
oscillators per unit volume, each having a natural oscillation
frequency � and satisfying the equation of motion

ẍ + �2x = e

m
E. (24)

(For notational simplicity we do not indicate here the r
dependence of E.) The polarization density and dielectric
constant in this model are, respectively,

P = Nex = Ne2/m

�2 − ω2
, (25)

and

εR(ω) = 1 + 4πNe2/m

�2 − ω2
= 1 − ω2

p

ω2 − �2
, (26)

where ωp = (4πNe2/m)1/2 is the plasma frequency. We write
Poynting’s theorem in its integral form:∮

S · n̂da = − 1

4π

∫ [
E · ∂D

∂t
+ H · ∂H

∂t

]
dV

= − 1

4π

∫ [
1

2

∂

∂t
(E2 + H2) + 4πE · ∂P

∂t

]
dV.

The integral of the normal component of S on the left-hand
side is, as usual, over a surface enclosing a volume V . From
(24),

E · ∂P
∂t

= m

e
(ẍ + �2x) · Neẋ = N

∂

∂t

(
1

2
mẋ2 + 1

2
m�2x2

)
,

(27)

and therefore ∮
S · n̂da = −

∫
u̇dV, (28)

u ≡ 1

8π
(E2 + H2) + N

(
1

2
mẋ2 + 1

2
m�2x2

)
. (29)

Here u is the density of total energy, that in the field plus that
in the medium. Using

x = e/m

�2 − ω2
Eω cos ωt and ẋ = − ωe/m

�2 − ω2
Eω sin ωt

(30)

and (26) for a monochromatic field Eω cos ωt , we find after
cycle averaging that

u = 1

16π
E2

ω + 1

16π
H2

ω + Ne2

4m

�2 + ω2

(�2 − ω2)2
E2

ω

= 1

16π

[
1 + ω2

p

�2 − ω2
+ 2ω2ω2

p

(�2 − ω2)2

]
E2

ω + 1

16π
H2

ω

= 1

16π

[
εR(ω) + ω

dεR

dω

]
E2

ω + 1

16π
H2

ω, (31)

confirming that Eq. (1) defines the total energy density
of a dielectric medium (µR = 1). From the relation H2

ω =
εR(ω)E2

ω,

u = 1

8π

[
εR + 1

2
ω

dεR

dω

]
E2

ω, (32)

the term (1/16π )ω[dεR/dω]E2
ω is seen from (29) and (30) to

be the (cycle-averaged) kinetic energy per unit volume of the
material oscillators in this model.

Absorption is included in this model by adding �ẋ (� > 0)
to the left-hand side of (24) [10]. Then it is easily shown that
the rate of change of energy density W in the volume V ,
defined such that∫

V

∂W
∂t

dV = −
∮

S · n̂da, (33)

is

∂W
∂t

= N
∂

∂t

[
1

2
mẋ2 + 1

2
m�2x2

]

+ ∂

∂t

[
1

8π
(E2 + H2)

]
+ 2�N

(
1

2
mẋ2

)
. (34)

A similar expression is derived in the QED theory in Sec. IV.
An important difference, however, is that in the QED theory
there is an additional term arising from Langevin forces, which
are required for the preservation of commutation relations.
In addition, we should stress that these Langevin forces also
ensure thermal equilibrium even when dissipation is present,
and in fact all our discussion about the quantum case is
restricted to systems in thermal equilibrium. Of course we
can also include a Langevin force in a classical model in order
to balance dissipative effects and obtain an average energy
consistent with thermal equilibrium.

III. QED ENERGY DENSITY IN A UNIFORM,
DISPERSIVE, NONABSORBING MEDIUM IN

THERMAL EQUILIBRIUM

One major distinction between the classical and QED
theories, of course, is that in QED there is a nonvanishing
zero-point energy associated among other things with Casimir
effects. For purposes of comparison with results obtained in the
following section when absorption is included, we reproduce
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here the thermal equilibrium QED energy density in a uniform,
dispersive medium in which absorption is negligible. To do
this we simply regard Eqs. (7) and (8) as expectation values
when expressed in symmetrized form in terms of the quantized
fields Ê and Ĥ. (We use circumflexes to designate operators.)
For the zero-temperature (vacuum) state |0〉, for example, we
use familiar expectation values, for example,

〈0|Ê(+)(r, ω) · Ê(−)(r, ω′)|0〉 = |E(r, ω)|2δ(ω − ω′),
(35)〈0|Ê(−)(r, ω) · Ê(+)(r, ω′)|0〉 = 0,

where Ê(+)(r, ω) and Ê(−)(r, ω) are, respectively, the photon
annihilation and creation parts of Ê(r, ω), and obtain straight-
forwardly

1

8π

∫ t

−∞
dt ′〈0|Ê · ∂D̂

∂t ′
+ ∂D̂

∂t ′
· Ê|0〉

= 1

4π

∫ ∞

0
dω

d(ωεR)

dω
|E(r, ω)|2 (36)

and

1

8π

∫ t

−∞
dt ′〈0|Ĥ · ∂B̂

∂t ′
+ ∂B̂

∂t ′
· Ĥ|0〉

= 1

4π

∫ ∞

0
dω

d(ωµR)

dω
|H(r, ω)|2 (37)

by manipulations similar to those used in the preceding section.
For the case of a uniform medium with negligible absorption,
these expressions imply the (infinite) zero-point energy density

uE + uM = 1

8π

∑
λ

∫ ∞

0
dω

[
d

dω
(ωεR)E2

λω

+ d

dω
(ωµR)H 2

λω

]
, (38)

where λ = 1, 2 denotes polarization components. The zero-
point squared amplitudes for the quantized field in a nonab-
sorbing medium are [11]

E2
λω = h̄

πc3
µR(ω)nR(ω)ω3,

(39)

H 2
λω = h̄

πc3

1

µR(ω)
n3

R(ω)ω3,

where nR(ω) = [εR(ω)µR(ω)]1/2 is the refractive index.
Therefore we have the familiar result

uE + uM = h̄

2π2c3

∫ ∞

0
dωω3n2

R(ω)
d

dω
[ωnR(ω)]

= h̄

2π2c2

∫ ∞

0
dωω3n2

R(ω)
1

vg(ω)

= h̄

2π2

∫ ∞

0
dkk2ω

= 2

8π3

∫
d3k

1

2
h̄ω, (40)

where we have used the relation k = nR(ω)ω/c and the
definition vg(ω) = c[d(nRω)/dω]−1 of the group velocity at
frequency ω. Whereas we have obtained this result for the
zero-point energy without taking absorption into account, we

show in the following section that it is valid in general for a
uniform absorbing medium.

The generalization to finite temperatures is similarly
straightforward and yields, of course,

uE + uM = 2

8π3

∫
d3k

[
1

2
h̄ω + h̄ω

eh̄ω/kBT − 1

]

≡
∫ ∞

0
dωρ(ω), (41)

where the spectral energy density [11,12]

ρ(ω) = n2
R(ω)h̄ω3

π2vg(ω)c2

(
1

2
+ 1

eh̄ω/kBT − 1

)
. (42)

IV. MODEL FOR A DISPERSIVE, ABSORBING
DIELECTRIC MEDIUM IN THERMAL EQUILIBRIUM

Following the work of many others [13], we model a
dielectric medium as a collection of harmonic oscillators.
Aside from the need to introduce oscillator strengths in order
to obtain correct numerical results, the oscillator model is an
excellent approximation if the atoms of a dielectric medium
remain with high probability in their ground states. Each
oscillator atom has a mass m and a natural frequency ω0 and is
coupled to a reservoir of other harmonic oscillators responsible
for the damping of its oscillations and the homogeneous line
broadening of its (electric-dipole) transition. The Hamiltonian
for this model, including the electromagnetic field and its
coupling to the atoms, is

Ĥ = 1

8π

∫
dr(Ê2 + Ĥ2) +

∑
j

(
1

2m

[
p̂j − e

c
Â(rj )

]2

+ 1

2
mω2

0x̂2
j

)
+

∫ ∞

0
dωh̄ω

∑
j

[
b̂†

j (ω) · b̂j (ω) + 1

2

]

− i

∫ ∞

0
dω
(ω)

∑
j

x̂j · [b̂j (ω) − b̂†
j (ω)]. (43)

The first two terms correspond in standard notation to the
energy of the electromagnetic field, the atom oscillators, and
their coupling via the vector potential Â(rj ), where rj denotes
the position of the j th atom. The third and fourth terms
represent, respectively, the energy of the reservoir oscillators
and their interaction with the atoms. The reservoir oscillators
satisfy the bosonic commutation relations

[b̂iµ(ω), b̂†jν(ω′)] = δij δµνδ(ω − ω′), [b̂iµ(ω), b̂jν(ω′)] = 0,

(44)

where we use Greek letters to denote Cartesian components of
vectors. The atom-reservoir coupling constant is chosen to be


(ω) =
(

mh̄γω

π

)1/2

(45)

in order that each atom’s oscillations be damped at the rate γ ,
as shown below.
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From (44) and [x̂iµ, p̂jν] = ih̄δij δµν we obtain in the dipole
approximation the Heisenberg equations of motion:

¨̂xj + ω2
0x̂j = e

m
Ê(rj ) + i

m

∫ ∞

0
dω
(ω)[b̂j (ω, t)

− b̂†
j (ω, t)], (46)

˙̂bj (ω, t) = −iωb̂j (ω, t) + 1

h̄

(ω)x̂j . (47)

Using the formal solution of (47) in (46), it follows that

¨̂xj + ω2
0x̂j = e

m
Ê(rj ) + 1

m
F̂Lj (t) + i

mh̄

∫ ∞

0
dω
2(ω)

×
∫ t

0
dt ′x̂j (t ′)[2i sin ω(t ′ − t)], (48)

where the “Langevin force” operator F̂Lj (t) acting on the j th
atom is

F̂Lj (t) = i

∫ ∞

0
dω
(ω)[b̂j (ω, 0)e−iωt − b̂†

j (ω, 0)eiωt ].

(49)

The third term on the right-hand side of (48) is

− 2

mh̄

∫ ∞

0
dω
2(ω)

∫ t

0
dt ′x̂j (t ′) sin ω(t ′ − t)

= −2γ

π

∫ t

0
dt ′x̂j (t ′)

∫ ∞

0
dωω sin ω(t ′ − t)

= 2γ

∫ t

0
dt ′x̂j (t ′)

∂

∂t ′
δ(t ′ − t) = −γ ˙̂xj (t). (50)

We have omitted a divergent frequency shift which, when
the atom-reservoir coupling is modified by a form factor to
produce a finite expression, can be assumed to be included in
the definition of the atom’s transition frequency ω0. Then (48)
simplifies to a “quantum Langevin equation” [14]:

¨̂xj + γ ˙̂xj + ω2
0x̂j = e

m
Ê(rj ) + 1

m
F̂Lj (t). (51)

In the absence of coupling to the electromagnetic field we
have, for times t 
 γ −1,

p̂j (t) = m ˙̂xj (t) =
∫ ∞

0
dωω
2(ω)

[
b̂j (ω)e−iωt

ω2
0 − ω2 − iγ ω

+ b̂†
j (ω)eiωt

ω2
0 − ω2 + iγ ω

]
. (52)

[We now write b̂j (ω) in place of b̂j (ω, 0).] Similarly, using
(44), we obtain [15]

[x̂iµ(t), p̂jν(t ′)] = δij δµν

2ih̄γ

π

∫ ∞

0

dωω2 cos ω(t ′ − t)(
ω2

0 − ω2
)2 + γ 2ω2

= ih̄δij δµν

[
cos ω1(t ′ − t)

− γ

2ω1
sin ω1|t ′ − t |

]
e−γ |t ′−t |/2, (53)

where ω1 ≡ [ω2
0 − γ 2/4]1/2; thus the canonical commutation

relation at equal times [x̂iµ(t), p̂jν(t)] = ih̄δij δµν is preserved
in the coupling of the atom to the reservoir [16].

The energy expectation value of a single oscillator without
coupling to the electromagnetic field is found similarly to be〈

1

2
m ˙̂x

2
j + 1

2
mω2

0x̂2
j

〉
= h̄γ

2π

∫ ∞

0
dω

ω
(
ω2

0 + ω2
)

(
ω2

0 − ω2
)2 + γ 2ω2

×
3∑

µ=1

[2〈b̂†jµ(ω)b̂jµ(ω)〉 + 1].

(54)

Since we are working in the Heisenberg picture, the expec-
tation value is over the initial state of the coupled system of
oscillators. If we assume that the reservoir is in an initial state
of thermal equilibrium at temperature T , while the oscillator
coupled to it is in its ground state, then

〈b̂†iµ(ω)b̂jν(ω′)〉 = 〈b̂iµ(ω)b̂†jν(ω′)〉 − δij δµνδ(ω − ω′)

= 1

eh̄ω/kBT − 1
δij δµνδ(ω − ω′)

≡ N (ω)δij δµνδ(ω − ω′) (55)

and〈
1

2
m ˙̂x

2
j + 1

2
mω2

0x̂2
j

〉
= 3h̄γ

π

∫ ∞

0
dω

ω
(
ω2

0 + ω2
)
N (ω)(

ω2
0 − ω2

)2 + γ 2ω2

+ 3h̄γ

2π

∫ ∞

0
dω

ω
(
ω2

0 + ω2
)

(
ω2

0 − ω2
)2 + γ 2ω2

.

(56)

The first term on the right is just the energy of the oscillator
in thermal equilibrium and has a rather complicated closed
form [17]; it becomes just 3h̄ω0/[eh̄ω0/kBT − 1] in the weak-
coupling limit (γ → 0). The second term is the zero-point
energy of the oscillator, which for ω1 > 0 may be written as

3h̄

π
ω1 cos−1

(
γ

2ω0

)
+ 3h̄γ

2π
ln

(
ωc

ω0

)
, (57)

where ωc is a high-frequency cutoff [18]. It reduces to (3h̄ω0)/2
in the weak-coupling limit.

A. Noise polarization

The Heisenberg equations of motion for the electric and
magnetic fields that follow from the Hamiltonian (43) have, of
course, the same form as their classical (Maxwell) counterparts

∇ × Ê = −1

c

∂B̂
∂t

,

(58)

∇ × Ĥ = 4π

c
Ĵ + 1

c

∂Ê
∂t

,

which must be supplemented with

∇ · B̂ = 0, ∇ · D̂ = 0, (59)

where

D̂ = Ê + 4π P̂,

Ĵ(r, t) = ∂P̂(r, t)
∂t

, (60)

P̂(r, t) = e
∑

j

x̂j (t)δ3(r − rj ),
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and, because our model does not include any magnetic activity,
we have B̂ = Ĥ. It is advantageous to work in the frequency
domain, so we write

Ê(r, t) =
∫ ∞

0
dω[Ê(r, ω)e−iωt + Ê†(r, ω)eiωt ],

Ĥ(r, t) =
∫ ∞

0
dω[Ĥ(r, ω)e−iωt + Ĥ†(r, ω)eiωt ], (61)

P̂(r, t) =
∫ ∞

0
dω[P̂(r, ω)e−iωt + P̂†(r, ω)eiωt ],

where the Fourier transform of the polarization density may
be written as

P̂(r, ω) = e
∑

j

x̂j (ω)δ3(r − rj ), (62)

x̂j (t) =
∫ ∞

0
dω[x̂j (ω)e−iωt + x̂†j (ω)eiωt ]. (63)

It follows from (51) that

P̂(r, ω) = e2/m

ω2
0 − ω2 − iγ ω

∑
j

Ê(rj , ω)δ3(r − rj )

+ ie/m

ω2
0 − ω2 − iγ ω


(ω)
∑

j

b̂j (ω)δ3(r − rj )

→ Ne2/m

ω2
0 − ω2 − iγ ω

Ê(r, ω)

+ iNe/m

ω2
0 − ω2 − iγ ω


c(ω)b̂(r, ω), (64)

in the approximation in which we assume the atoms are
continuously distributed with a density N and 
c(ω) =√

ρmh̄γω/π , with ρm = m/N .
From Maxwell’s equations [Eqs. (58) and (59)] and the fact

that ∇ · b̂(r, ω) = 0 [19], we obtain

∇2Ê(r, ω) + ω2

c2
Ê(r, ω)=−4π

ω2

c2
P̂(r, ω)

= −4πNe2/m

ω2
0 − ω2 − iγ ω

ω2

c2
Ê(r, ω)

− 4πieN/m

ω2
0 − ω2 − iγ ω

ω2

c2

c(ω)b̂(r, ω),

(65)

or

∇2Ê(r, ω) + ω2

c2
ε(ω)Ê(r, ω) = −ω2

c2
K̂(r, ω), (66)

where the complex permittivity is

ε(ω) = 1 − 4πNe2/m

ω2 − ω2
0 + iγ ω

≡ 1 − ω2
p

ω2 − ω2
0 + iγ ω

= εR(ω) + iεI (ω). (67)

We have also defined the “noise polarization” at frequency ω:

K̂(r, ω) = 4πiNe/m

ω2
0 − ω2 − iγ ω


c(ω)b̂(r, ω). (68)

This contribution to the polarization arises from the Langevin
force F̂Lj (t) in the quantum Langevin equation (51). Its prin-

cipal properties for our purposes are the thermal equilibrium
expectation values

〈K̂µ(r, ω)〉 = 〈K̂†
µ(r, ω)〉 = 0,

(69)〈K̂µ(r, ω)K̂ν(r′, ω′)〉 = 〈K̂†
µ(r, ω)K̂†

ν (r′, ω′)〉 = 0,

and

〈K̂†
µ(r, ω)K̂ν(r′, ω′)〉

= 4h̄εI (ω)δµνδ(ω − ω′)δ3(r − r′)
1

eh̄ω/kBT − 1
, (70)

〈K̂µ(r, ω)K̂†
ν (r′, ω′)〉 = 4h̄εI (ω)δµνδ(ω − ω′)δ3(r − r′)

×
[

1

eh̄ω/kBT − 1
+ 1

]
, (71)

all of which follow from (55) and 〈b̂iµ(ω)b̂jν(ω′)〉 = 0.
Equations (70) and (71) constitute nothing other than the
fluctuation-dissipation theorem, which we derived from the
fundamental assumptions of a canonical bath and a linear
coupling to the matter.

We can proceed formally now as in Lifshitz’s article [2] and
define operators ĝλ(k, ω) by writing

K̂(r, ω) =
∫

d3k
∑
λ=1,2

ĝλ(k, ω)ekλe
ik·r. (72)

The solenoidal character of b̂(r, ω) implies that ∇ · K̂(r, ω) =
0 and therefore we can choose the vectors ekλ such that k ·
ekλ = 0 and ekλ · ekλ′ = 0, λ = 1, 2; we also take the ekλ to be
real. Then

ĝλ(k, ω) =
(

1

2π

)3 ∫
d3rK̂(r, ω) · ekλe

−ik·r

≡
(

1

2π

)3 ∫
d3rK̂λ(r, ω)e−ik·r, (73)

and Eqs. (68) and (44) imply the commutation relation

[ĝλ(k, ω), ĝ†
λ′ (k′, ω′)] = h̄

2π3
εI (ω)δλλ′δ(ω − ω′)δ3(k − k′),

(74)

where again we make the uniform continuum approximation
for the spatial distribution of the material oscillators. Finally
it will be convenient to introduce the operators

Ĉλ(k, ω) ≡ [h̄εI (ω)/2π3]−1/2ĝλ(k, ω), (75)

satisfying

[Ĉλ(k, ω), Ĉ†
λ′ (k′, ω′)] = δλλ′δ(ω − ω′)δ3(k − k′). (76)

B. Remarks on the Lifshitz theory

It seems worthwhile as an aside to compare the formulation
presented thus far with the Lifshitz theory. For this purpose we
write

1

2
〈K̂†

µ(r, ω)K̂ν(r′, ω′) + K̂µ(r, ω)K̂†
ν (r′, ω′)〉

= 4h̄εI (ω)δµνδ(ω − ω′)δ3(r − r′)
[

1

eh̄ω/kBT − 1
+ 1

2

]
.

(77)
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The right-hand side is equivalent to that in Eq. (1.2) of
Lifshitz’s article [2], which in our notation has the form

〈〈K∗
µ(r, ω)Kν(r′, ω′)〉〉 = 4h̄εI (ω)δµνδ(ω − ω′)δ3(r − r′)

×
[

1

eh̄ω/kBT − 1
+ 1

2

]
, (78)

with the 〈〈· · ·〉〉 denoting a classical ensemble average. This
expression in the Lifshitz theory is a statement of a fluctuation-
dissipation relation that Lifshitz attributes to Rytov [2]. The
difference between (77) and (78) reflects the fact that in
Lifshitz’s theory the thermal equilibrium electric, magnetic,
and noise polarization fields are treated in effect as classical
fluctuating fields; the fluctuation-dissipation relation (78) is
used to relate the average of the square of the noise polarization
to the imaginary part of the permittivity. The constant h̄ appears
in (78) as a result of fixing the right-hand side such that the
average over the classical ensemble for the squared fields
matches the corresponding quantum expectation values. In
our (quantum) formulation based on the quantum Langevin
equation for the material oscillators, the only nonvanishing
contribution to the expectation value of the square of the noise
polarization at T = 0, for instance, is

〈K̂µ(r, ω)K̂†
ν (r′, ω′)〉 = 4h̄εI (ω)δµνδ(ω − ω′)δ3(r − r′),

(79)

twice the corresponding result in Lifshitz’s article. But
Lifshitz’s averages for the squared fields are the same
as our corresponding quantum expectation values be-
cause in his formulation both 〈〈K∗(r, ω)K(r′, ω′)〉〉 and
〈〈K(r, ω)K∗(r′, ω′)〉〉 contribute (equally) to these averages.
Thus the same Casimir force will be obtained in either
approach because they both involve the same average zero-
point energy per mode, although of course the averages in
the two approaches are fundamentally different. In Lifshitz’s
theory, in which forces between bodies are calculated using
the stress tensor, there are no quantized fields, and averages of
components of the stress tensor are over classical ensembles of
stochastic fields, their statistical properties being determined
by imposing the Rytov fluctuation-dissipation relation (78).

For the calculation of the Casimir force between perfectly
conducting plates, for example, a stochastic electrodynamical
(SED) theory yields the correct force when h̄ is introduced by
requiring that there is a zero-point field energy (1/2)h̄ω per
mode of frequency ω [20]. In SED, as in Lifshitz’s theory,
both E∗(r, ω) · E(r, ω) and E(r, ω) · E∗(r, ω) contribute to the
average of the squared electric field at T = 0, whereas in our
quantized-field approach only Ê(r, ω) · Ê†(r, ω) contributes.
The Lifshitz approach to the calculation of Casimir forces
may be regarded as an application SED in which dissipation
as well as finite thermal equilibrium temperatures are treated.

C. Electric and magnetic fields

An expression for the quantized electric field in an absorp-
tive dielectric now follows directly from Eqs. (61), (66), (72),
and (75):

Ê(r, t) =
∫

d3k
∑

λ

∫ ∞

0
dω

√
h̄εI (ω)/2π3

ω2/c2

k2 − ε(ω)ω2/c2

× Ĉλ(k, ω)ekλe
−i(ωt−k·r) + H.C. (80)

From ∇ × Ê = −(1/c)∂B̂/∂t we also obtain an expression for
the magnetic field (recalling that µ = 1 under our assumption
in this section of a nonmagnetic medium):

Ĥ(r, t) = ic

∫
d3k

∑
λ

∫ ∞

0
dω

√
h̄εI (ω)/2π3

× ω2/c2

k2 − ε(ω)ω2/c2
Ĉλ(k, ω)

×ω−1(k × ekλ)e−i(ωt−k·r) + H.C. (81)

These expressions have the same form as the corresponding
ones obtained by Huttner and Barnett [6] by Fano diagonal-
ization of the entire system of coupled harmonic oscillators.

One quantity of interest is the zero-temperature expectation
value of Ê2(r, t), for which the considerations above yield

〈Ê2(r, t)〉 = h̄

2π3c4

∫ ∞

0
dω

∫
d3k

∑
λ

ω4εI (ω)

|k2 − ε(ω)ω2/c2|2

= h̄

2π3c4

∑
λ

∫ ∞

0
dωω4εI (ω)

×
∫ ∞

0

4πk2dk

[k2 − ω2εR(ω)/c2]2 + ω4ε2
I (ω)/c4

= h̄

πc3

∑
λ

∫ ∞

0
dωω3nR(ω), (82)

where we have used the relations εR(ω) = n2
R(ω) − n2

I (ω) and
εI (ω) = 2nR(ω)nI (ω) for the real and imaginary parts (nR and
nI ) of the refractive index. We note that this is the same form
one would obtain by quantizing the field in a dispersive and
nonabsorbing medium, assuming a purely real permittivity
εR(ω) [11].

For Ĥ2(r, t) we obtain the zero-point expectation value

〈Ĥ2(r, t)〉 = h̄

2π3c2

∑
λ

∫ ∞

0
dωω2εI (ω)

×
∫ ∞

0

4πk4dk

|k2 − ε(ω)ω2/c2|2 .

= h̄

2π3c2
Im

∑
λ

∫ ∞

0
dωω2ε(ω)

∫
d3k

k2 − ω2ε(ω)/c2
.

(83)

The integral over k diverges. However, it is obtained in the
approximation that the atoms of the dielectric form a contin-
uum, an approximation that is invalid when ka 
 1, where
a is a typical interatomic spacing. To apply our macroscopic
approach based on the characterization of the medium by a
permittivity ε(ω)—a long-photon-wavelength approximation
implicit in the Lifshitz theory—we must “regularize” the
integral (83) to extract a finite result. In this case it is convenient
to introduce a Lorentzian cutoff to the k integral [21] and then,
by taking advantage of the integrand’s even parity, a simple
application of the residue theorem gives (in the continuum
limit)

lim
a→0

∫
d3k

k2 − εω2/c2

1

1 + k2a2
= 2π2

a
+ 2π2i

ω

c
ε1/2, (84)
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where, for clarity, we omitted the ω dependence of ε(ω).
Finally, a direct substitution of (84) into (83) gives

1

8π
〈Ĥ2(r, t)〉 = h̄

8π2c3

∑
λ

∫ ∞

0
dωω2

[εI c

a
+ ωReε3/2

]
,

(85)

which, of course, diverges as a → 0 even before the ω inte-
gration. We shall see in the next subsection that the divergent
part is actually canceled out when all the contributions for the
energy are taken into account.

D. Energy density

To obtain an expression for the total energy density in the
dielectric medium we start from Poynting’s theorem in the
conventional notation (symmetrized Poynting operator Ŝ =
(c/8π )[Ê × Ĥ − Ĥ × Ê]) and take expectation values over the
initial state of the system consisting of the field, the dielectric
atoms, and the reservoir:∮

〈Ŝ〉 · nda = − 1

8π

∫ 〈
Ê · ∂D̂

∂t
+ ∂D̂

∂t
· Ê

〉
dV

− 1

8π

∫ 〈
Ĥ · ∂Ĥ

∂t
+ ∂Ĥ

∂t
· Ĥ

〉
dV. (86)

According to the usual interpretation, the left-hand side of (86)
is the energy flux through a given surface S and, given that we
are assuming thermal equilibrium within our system, it should
vanish. Thermal equilibrium also allows us to identify the rate
of change with time of the expectation value of the total energy
W per unit volume:

∂W

∂t
= 1

8π

〈
Ê · ∂D̂

∂t
+ ∂D̂

∂t
· Ê

〉
+ 1

8π

∂

∂t
〈Ĥ2〉, (87)

which, of course, also vanishes. For the system under con-
sideration D̂ = Ê + 4π P̂ε + K̂, where P̂ε is the part of the
polarization giving rise to the dielectric permittivity ε(ω) and
K̂ is the noise polarization defined by (68). Thus D̂ = D̂ε + K̂
and

∂W

∂t
= ∂W1

∂t
+ ∂W2

∂t
, (88)

where we define

∂W1

∂t
= 1

8π

〈
Ê · ∂D̂ε

∂t
+ ∂D̂ε

∂t
· Ê

〉
+ 1

8π

∂

∂t
〈Ĥ2〉 (89)

and

∂W2

∂t
= 1

8π

〈
Ê · ∂K̂

∂t
+ ∂K̂

∂t
· Ê

〉
. (90)

Before proceeding with the calculation of W we note the
following identity that follows from our model of the dielectric:

∂W

∂t
=

〈
∂

∂t

∑
j

[
1

2
m ˙̂x

2
j + 1

2
mω2

0x̂2
j

]
δ3(r − rj )

+ 1

4π

∂

∂t
[Ê2 + Ĥ2] +

∑
j

[
2γ

(
1

2
m ˙̂x

2
j

)

− ˙̂xj · FLj

]
δ3(r − rj )

〉
. (91)

The first term is the rate of change of the energy density (kinetic
plus potential) of the oscillators constituting the dielectric, and
the second term is the rate of change of the energy density of
the electromagnetic field. In the absence of any dissipation
(γ = 0 and therefore FLj = 0), the third term on the right
vanishes, and W = u is just the total (matter-plus-field) energy
density. The third term accounts for the effect of the reser-
voir on the dielectric oscillators: 2γ

∑
j ( 1

2m ˙̂x
2
j )δ3(r − rj ) is

the rate of change of kinetic energy density due to the dissipa-
tive effect of the reservoir, while

∑
j

˙̂xj · FLj δ
3(r − rj ) is the

rate of work per unit volume done by the Langevin forces on
the dielectric oscillators. In the absence of the electromagnetic
interaction these effects cancel, and the third term in (91)
again vanishes. There is a close formal similarity between
(91) and the corrresponding expression (34) that follows from
the classical oscillator model. The essential physical difference
between (91) and (34) lies simply in the effect of the Langevin
force term in the quantum electrodynamical expression of
energy conservation.

To obtain the total energy density we focus first on the case
of zero temperature, as the result for finite temperature requires
only a simple extension of the zero-temperature calculation,
as discussed below. Using (61) plus

∂D̂ε

∂t
= −i

∫ ∞

0
dωω[ε(ω)Ê(r, ω)e−iωt

− ε∗(ω)Ê†(r, ω)e+iωt ], (92)

and integrating over t , we obtain

W1(r, t) = 1

8π

∑
λ

∫ ∞

0
dω′

∫ ∞

0
dω

ω′ε∗(ω′) − ωε(ω)

ω′ − ω

×〈Êλ(r, ω) · Ê†
λ(r, ω′)〉e−i(ω−ω′)t + 1

8π
〈Ĥ2(r, t)〉,

(93)

where we have used the fact that the vacuum (zero-
temperature) expectation value 〈Ê†

λ(r, ω) · Êλ′(r, ω′)〉 = 0
while 〈Êλ(r, ω) · Ê†

λ′ (r, ω′)〉 vanishes unless λ = λ′ and ω =
ω′. To deal with what appears to be a singularity at ω = ω′ we
rewrite (93) as a sum of two identical terms and interchange
ω and ω′ in the second one to get

W1(r, t) = 1

8π

∑
λ

∫ ∞

0
dω′

∫ ∞

0
dω

ω′εR(ω′) − ωεR(ω)

ω′ − ω
〈Êλ(r, ω) · Ê†

λ(r, ω′)〉e−i(ω−ω′)t − i

8π

∑
λ

∫ ∞

0
dω′

∫ ∞

0
dω[ω′εI (ω′)

+ωεI (ω)]
〈Êλ(r, ω) · Ê†

λ(r, ω′)〉e−i(ω−ω′)t − 〈Êλ(r, ω′) · Ê†
λ(r, ω)〉ei(ω−ω′)t

2(ω′ − ω)
+ 1

8π
〈Ĥ2(r, t)〉. (94)
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Next we use (80) and (76) to write the vacuum expectation
value

〈Êλ(r, ω) · Ê†
λ(r, ω′)〉

= 〈Êλ(r, ω′) · Ê†
λ(r, ω)〉

= h̄

2π3
εI (ω)

ω4

c4

∫
d3k

1

|k2 − ε(ω)ω2/c2|2 δ(ω − ω′),

(95)

which allows us to readily evaluate the first term in (94) by
using

lim
ω′→ω

ω′εR(ω′) − ωεR(ω)

ω′ − ω
= d

dω
[ωεR(ω)]. (96)

The second term is calculated by observing that the zeroth
order contributions in (ω − ω′) in the numerator cancel each
other, while the first-order terms produce a contribution linear
in the elapsed time t :

lim
ω′→ω

e−i(ω−ω′)t − ei(ω−ω′)t

2(ω′ − ω)
= it. (97)

Therefore,

W1(r, t) = 1

8π

h̄

2π3c4

∑
λ

∫ ∞

0
dω

(
d

dω
[ωεR] + 2tωεI

)
ω4εI

×
∫

d3k
1

|k2 − εω2/c2|2 + 1

8π
〈Ĥ2(r, t)〉

= h̄

8π2c3

∑
λ

∫ ∞

0
dωω3nR

d

dω
[ωεR] + 1

8π

×〈Ĥ2(r, t)〉 + t
h̄

4π2c3

∑
λ

∫ ∞

0
dωω4nRεI ,

(98)

where we have again used the relations εR = n2
R − n2

I and
εI = 2nRnI and we are leaving the ω dependence implicit in
both ε and n. Let us note that the rate of change in time of
W1(t) is a positive constant, given by the last term in (98) [22].
This implies that the contribution coming from this term would
generate heat in any given volume V (meaning an inward flux
of energy). Since we know that in thermal equilibrium the total
flux should vanish, this energy increase must be balanced out
by an energy decrease coming from W2(t).

To evaluate W2 as given in Eq. (90) we first define K̂(k, ω)
by writing

K̂(r, t) =
∫ ∞

0
dω

∫
d3k

∑
λ

[K̂λ(k, ω)e−iωt eik·r

+ K̂†
λ(k, ω)eiωt e−ik·r], (99)

and use (72), (75), and (80) to relate K̂λ(k, ω) and Êλ(k, ω):

K̂λ(k, ω) = c2

ω2
[k2 − ε(ω)ω2/c2]Êλ(k, ω). (100)

Then, after inserting (99) and (100) in (90) and a few algebraic
steps, we get

W2(r, t)

= − h̄

16π4c2

∑
λ

∫ ∞

0
dω′

∫ ∞

0
dω

ω2ω′

ω − ω′
√

εI (ω)εI (ω′)

× δ(ω − ω′)
∫

d3k

[
e−i(ω−ω′)t

k2 − ε(ω)ω2/c2

+ ei(ω−ω′)t

k2 − ε∗(ω)ω2/c2

]
, (101)

and, proceeding as in the evaluation of W1, we obtain

W2(r, t) = − h̄

8π4c2

∑
λ

Re
∫ ∞

0
dω′

∫ ∞

0
dω

ω2ω′

ω − ω′

×
√

εI (ω)εI (ω′)δ(ω − ω′)
∫

d3k
1

k2 − ε(ω′)ω′2/c2

− t
h̄

4π2c3

∑
λ

∫ ∞

0
dωω4nRεI , (102)

where we have used the integral
∫

d3k|k2 − εω2/c2|−2 =
2π2cnR/εIω [as in Eq. (82)] to obtain the second term. Now
we see clearly that the time-dependent term in W2(t) precisely
cancels the one in W1(t), ensuring thermal equilibrium. Let
us note also that the first term in (102) contains the same k

integral as the one present in (83), and therefore we may invoke
Eq. (84) to evaluate it. The first term of (102) is then equal to

− h̄

8π4c2

∑
λ

∫ ∞

0
dω′

∫ ∞

0
dω

ω2ω′

ω − ω′

√
εI ε

′
I

2π2

a
δ(ω − ω′),

(103)

where we again left implicit the ω and ω′ dependencies in εI .
The apparent singularity in the ω′ → ω limit may be dealt with
by using the procedure described just before Eq. (94), and then
after some trivial steps we get

− h̄

8π2c2

∑
λ

∫ ∞

0
dωω2 εI

a
, (104)

which cancels exactly the first term in (85). We still have to
work on the contribution of the second term of (84) to the first
term of (102), which leads to

h̄

8π2c3

∑
λ

Im
∫ ∞

0
dω

∫ ∞

0
dω′ lim

ω′→ω

ωω′√εI (ω)εI (ω′)
ω − ω′

× [ω2ε1/2(ω) − ω′2ε1/2(ω′)]

= h̄

8π2c3

∑
λ

Im
∫ ∞

0
dωω2εI (ω)

d

dω
[ω2ε1/2(ω)]. (105)

The total energy density is obtained by adding (98) and (102)
and using (105) and (85):

W = h̄

8π2c3

∑
λ

∫ ∞

0
dωω3

{
Re

[
nR

d

dω
(ωε) + ε3/2

]

+ 1

ω
εI Im

d

dω
(ω2ε1/2)

}
. (106)

The above expression for the energy density of a uniform,
dispersive, and absorbing medium is the most important result
of this article. Using ε(ω) = n2(ω) and the following relations:

nR

d

dω
(ωεR) = (

n2
R − n2

I

)
nR

+ωnR

(
2nR

dnR

dω
− 2nI

dnI

dω

)
,
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Re ε3/2 = (
n2

R − n2
I

)
n3

R − 3nRn2
I

(107)
εI

ω
Im

d

dω
(ω2√ε) = 4nRn2

I + 2nRnIω
dnI

dω
,

and summing over polarizations, we obtain our final expres-
sion for the vacuum expectation value of the total energy
density:

W = h̄

2π2c3

∫ ∞

0
dωω3n2

R(ω)

(
nR + ω

dnR

dω

)
(108)

= h̄

2π2c3

∫ ∞

0
dωω3n2

R(ω)
d

dω
[ωnR(ω)],

which is just (40): the QED zero-point energy density depends
in exactly the same way on the refractive index, regardless
of whether absorption is accounted for, and in fact it depends
only on the real part of the refractive index.

The same conclusion holds for finite temperatures. In
this case both 〈Ê†

λ(r, ω) · Êλ′ (r, ω′)〉 and 〈Êλ(r, ω) · Ê†
λ′(r, ω′)〉

make nonvanishing contributions to W1 and W2. Using

〈Ĉ†
λ(k, ω)Ĉλ′ (k′, ω′) + Ĉλ(k, ω)Ĉ†

λ′ (k′, ω′)〉
= δλ,λ′δ(ω − ω′)δ3(k − k′) coth

h̄ω

2kBT
, (109)

we arrive straightforwardly at exactly the formula (41) for the
total energy density in thermal equilibrium.

V. CONCLUDING REMARKS

We have shown that the approximate classical expression
(1) for the energy density in a band of frequencies at which
absorption in a dielectric can be ignored is in fact exactly
correct as a spectral average value in (i) classical theory in
the case where the fields at different frequencies within the
band undergo uncorrelated fluctuations and (ii) QED at zero
temperature or more generally at thermal equilibirum.

Using the model of a dielectric medium as a collection
of harmonic oscillators, and including the coupling of each
oscillator to a reservoir of oscillators that give rise to dissipa-
tion and a Langevin force on each oscillator, we have shown
how a noise polarization results from these reservoirs and
have compared it with that employed in Lifshitz’s well-known
theory of Casimir effects. From this comparison we concluded
that the Lifshitz theory is actually a classical stochastic
electrodynamical theory. We arrived at quantized electric and
magnetic fields having the same form as in the Huttner-Barnett
approach in which the complete Hamiltonian is diagonalized,
and showed that the expectation value of the total energy
of the system of dielectric oscillators, reservoirs, and elec-
tromagnetic field has the same form in thermal equilibrium,
including the limiting case of zero temperature, independent
of whether we take dissipation into account in quantizing the
field.

Our treatment allowed us to derive the celebrated
fluctuation-dissipation theorem and also to show explicitly
that it ensures that in thermal equilibrium the total energy of
the system of oscillators, reservoirs and electromagnetic field
is constant in time. When absorption is present, there is a
coupling between the system of oscillators and the reservoir
and an energy exchange between them. In our example of

a dielectric medium modeled by a collection of harmonic
oscillators, we have explicitly shown that a positive energy
rate Ẇ1 > 0 arising from the interaction of the EM field with
the system is exactly canceled by a corresponding negative
energy rate coming from the interaction of the system with the
reservoir, Ẇ2 = −Ẇ1 < 0. We should stress that this energy
rate balance is absolutely general and applies not only to
absorbing dielectric media, as treated here, but also to arbitrary
dissipative materials (e.g., metals modeled by a dissipative
Drude permittivity). This is merely a manifestation of the
fluctuation-dissipation theorem and as such holds for Lifshitz’s
theory, which assumes thermal equilibrium.

These conclusions cannot be applied directly to the question
raised in the Introduction: why do derivations of Casimir forces
that start from calculations of changes in zero-point energy of
presumed dissipationless media appear in the end to produce
the same results as in the Lifshitz theory, where a correlation
function of a fluctuating (“noise”) polarization is related to the
imaginary (dissipative) part of the permittivity? To address this
question we must take into account the hallmark of Casimir
effects, namely, the role of boundaries. We have restricted
ourselves here to the model of perfectly uniform media with
no boundaries; the role of boundaries will be addressed in a
forthcoming article [7].

Finally we mention two examples, not involving bound-
aries, where these conclusions are consistent with known
results. The first example is spontaneous emission of an atom
embedded in a dielectric medium. The Einstein A coefficient
for the rate of spontaneous emission at the electric dipole
transition frequency ω0 is proportional to the zero-temperature
expectation value of Ê2(r, ω0), which from (82) is seen to
be proportional to nR(ω0). Therefore, the A coefficient for
an atom in a dielectric medium with complex refractive
index nR(ω) + inI (ω) is just nR(ω0) times the free-space A

coefficient [23]. This assumes the continuum approximation
for the dielectric; near-field interactions of the embedded
excited atom with host atoms, including local field corrections,
result in a rate of energy loss by the excited atom that depends
on nI (ω0) [24].

The second example, less straightforard but more closely
related to Casimir forces, is the van der Waals interaction
between two atoms embedded in a dielectric medium. It
has been shown that the interactions between electrically
or magnetically polarizable atoms can be obtained from the
quantized electric and magnetic fields in a nonabsorbing
medium [25]. Absorption affects the final expression for the
interaction only after the permittivity (or permeability) is
properly regarded as a complex function of frequency, analytic
in the upper half of the complex frequency plane. As in the
Lifshitz theory, and as in the present work, the calculations
leading to this result are based on the continuum model of the
dielectric medium.
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